Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[[1,2-bis(benzimidazol-2yl)ethane]cadmium(II)]-*u*-sebacato]

Yan-Ling Zhou,^a Hong Liang^b and Ming-Hua Zeng^{b*}

^aSchool of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, 541004, People's Republic of China

Correspondence e-mail: zmh@mailbox.gxnu.edu.cn

Received 29 January 2010; accepted 11 February 2010

Key indicators: single-crystal X-ray study; T = 110 K; mean σ (C–C) = 0.005 Å; R factor = 0.032; wR factor = 0.096; data-to-parameter ratio = 13.9.

In the title compound, $[Cd(C_{10}H_{16}O_4)(C_{16}H_{14}N_4)]_n$, the Cd^{II} ion is six-coordinated in a distorted octahedral geometry by four carboxylate O atoms from two sebacate ligands and two N atoms from the chelating 1,4-bis(2-benzimidazolyl)ethanebutane ligand. Neighboring Cd^{II} ions are bridged by the sebacate ligands, forming a zigzag polymeric chain structure. The chains are further extended into a threedimensional supramolecular structure through intermolecular N-H···O hydrogen bonds.

Related literature

For the synthesis of the ligand, see: van Albada et al. (1995) and literature cited therein. For M-dicarboxylate complexes with aromatic N-donor chelating ligands, see: Wei et al. (2010) [M = lead(II) adduct]; Meng et al. (2008) [M = zinc(II) adduct];Wang *et al.* (2006) [M = cadmium(II) and zinc(II) adducts].

Experimental

Crvstal data $[Cd(C_{10}H_{16}O_4)(C_{16}H_{14}N_4)]$ $M_r = 574.95$

Monoclinic, $P2_1/c$ a = 8.7554 (14) Å

b = 15.674 (3) Å	
c = 18.455 (3) Å	
$\beta = 98.851 \ (3)^{\circ}$	
V = 2502.4 (7) Å ³	
Z = 4	

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.669, T_{\rm max} = 0.791$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	316 parameters
$wR(F^2) = 0.096$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.82 \text{ e} \text{ Å}^{-3}$
4390 reflections	$\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$

Table 1

Selected bond lengths (Å).

Cd1-N1	2.246 (3)	Cd1-O1	2.348 (3)
Cd1-N3	2.287 (3)	Cd1-O3	2.377 (3)
Cd1-O2	2.340 (3)	Cd1-O4	2.382 (3)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdotsO2^{i}$ $N4-H4A\cdotsO3^{ii}$	0.88	1.85	2.722 (4)	173
	0.88	1.87	2.686 (4)	154

Symmetry codes: (i) x - 1, y, z; (ii) -x, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

We thank Central South University and Guangxi Normal University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2241).

References

- Albada, G. A. van, Lakin, M. T., Veldman, N., Spek, A. L. & Reedijk, J. (1995). Inorg. Chem. 34, 4910-4917.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Meng, F.-Y., Teng, L., Chen, X. M., Zhao, B. L. & Jiao, P. (2008). Acta Cryst. E64. m319.

Sheldrick, G. M. (1996). SADABS. University of Goöttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, X.-L., Qin, C., Wang, E.-B. & Xu, L. (2006). Cryst. Growth Des. 6, 2061-2065.

Wei, L.-Q., Zeng, M.-H. & Ng, S. W. (2010). Acta Cryst. E66, m56.

Westrip, S. P. (2010). publCIF. In preparation.

Mo $K\alpha$ radiation $\mu = 0.91 \text{ mm}^{-1}$

 $0.48 \times 0.34 \times 0.27 \text{ mm}$

10665 measured reflections 4390 independent reflections

3533 reflections with $I > 2\sigma(I)$

T = 110 K

 $R_{\rm int}=0.026$

supplementary materials

Acta Cryst. (2010). E66, m405 [doi:10.1107/S1600536810005714]

catena-Poly[[[1,2-bis(benzimidazol-2-yl)ethane]cadmium(II)]-µ-sebacato]

Y.-L. Zhou, H. Liang and M.-H. Zeng

Comment

In recent years, studies on metal-dicarboxylate complexes with aromatic N-donor chelating ligands have attracted special attention because of their interesting structural and chemical properties (Wei *et al.*, 2010; Meng *et al.*, 2008; Wang *et al.*, 2006). Herein, the title new cadmium-dicarboxylate complex, Fig. 1, is reported.

Selected bond distances are listed in Table 1. Each Cd(II) center is six-coordinated by two N atoms of the chelating 1,4-Bis(2-benzimidazolyl)ethanebutane ligand and four O atoms from two sebacate ligands. The neighboring Cd(II) ions are bridged by sebacate ligands to form a zigzag polymeric chain structure (Fig. 2). In the crystalstructure, the adjacent chains are linked via N—H···O hydrogen bonds (Table 2) resulting in the formation of a three-dimensional supramolecular structure.

Experimental

1,4-Bis(2-benzimidazolyl)ethanebutane was synthesized by using aliterature method (van Albada *et al.*, 1995). A solution of $Cd(NO_3)_2.6H_2O$ (0.17 g, 0.5 mmol), 1,4-Bis(2-benzimidazolyl)ethanebutane (0.13 g, 0.5 mmol), sebacic acid (0.10 g, 0.5 mmol), NaOH (0.02 g, 1 mmol) in H₂O (10 ml) and CH₃OH (5 ml) was stirred under ambient conditions, then sealed in a Teflon-lined steel vessel, heated at 443 K for 3 d, and cooled to room temperature. The resulting product was recovered by filtration, washed with distilled water and dried in air (35% yield).

Refinement

The C-bound H atoms were placed in calculated positions (C—H = 0.95-0.98 Å) and included in the refinement in the riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$. The amino H atoms were located in a difference Fourier map and refined isotropically with distance restraints of N—H = 0.88 (1) Å.

catena-Poly[[[1,2-bis(benzimidazol-2-yl)ethane]cadmium(II)]- µ-sebacato]

Crystal data	
$[Cd(C_{10}H_{16}O_4)(C_{16}H_{14}N_4)]$	F(000) = 1176
$M_r = 574.95$	$D_{\rm x} = 1.526 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5481 reflections
a = 8.7554 (14) Å	$\theta = 2.4 - 27.0^{\circ}$
<i>b</i> = 15.674 (3) Å	$\mu = 0.91 \text{ mm}^{-1}$
c = 18.455 (3) Å	T = 110 K
$\beta = 98.851 \ (3)^{\circ}$	Block, yellow

V = 2502.4 (7) Å³ Z = 4

$0.48 \times 0.34 \times 0.27 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	4390 independent reflections
Radiation source: fine-focus sealed tube	3533 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
phi and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 6$
$T_{\min} = 0.669, T_{\max} = 0.791$	$k = -18 \rightarrow 17$
10665 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.096$	H-atom parameters constrained
<i>S</i> = 1.09	$w = 1/[s^{2}(F_{o}^{2}) + (0.048P)^{2} + 3.287P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4390 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
316 parameters	$\Delta \rho_{max} = 0.82 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.44 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic or e	quivalent isotropic	c displacement	parameters ((A^2))
		, ,		()		

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cd1	0.09748 (3)	0.490930 (16)	0.300044 (14)	0.01805 (11)
N1	-0.1515 (4)	0.52080 (19)	0.25864 (16)	0.0194 (7)
N2	-0.4062 (4)	0.50949 (19)	0.25203 (17)	0.0203 (7)
H2A	-0.4966	0.4885	0.2581	0.024*
N3	0.0647 (4)	0.41909 (19)	0.40440 (16)	0.0181 (7)
N4	-0.0190 (3)	0.38418 (19)	0.50792 (15)	0.0190 (7)
H4A	-0.0836	0.3724	0.5387	0.023*
01	0.1064 (3)	0.38258 (17)	0.21291 (15)	0.0269 (6)

O2	0.3259 (3)	0.43106 (16)	0.27181 (14)	0.0210 (6)
O3	0.1740 (3)	0.60960 (16)	0.37739 (13)	0.0217 (6)
O4	0.1927 (3)	0.62282 (16)	0.26098 (14)	0.0233 (6)
C1	-0.2210 (4)	0.5909 (2)	0.2205 (2)	0.0214 (8)
C2	-0.1571 (5)	0.6594 (3)	0.1866 (2)	0.0278 (9)
H2B	-0.0485	0.6645	0.1883	0.033*
C3	-0.2570 (5)	0.7191 (3)	0.1510 (2)	0.0299 (10)
H3A	-0.2164	0.7663	0.1278	0.036*
C4	-0.4171 (5)	0.7116 (3)	0.1481 (2)	0.0302 (10)
H4B	-0.4822	0.7544	0.1234	0.036*
C5	-0.4836 (5)	0.6447 (3)	0.1799 (2)	0.0272 (9)
H5A	-0.5924	0.6396	0.1773	0.033*
C6	-0.3813 (4)	0.5844 (2)	0.2163 (2)	0.0213 (8)
C7	-0.2672 (4)	0.4744 (2)	0.27599 (19)	0.0197 (8)
C8	-0.2521 (5)	0.3929 (2)	0.3185 (2)	0.0219 (8)
H8A	-0.1653	0.3598	0.3040	0.026*
H8B	-0.3476	0.3591	0.3045	0.026*
C9	-0.2244 (4)	0.4032 (2)	0.4013 (2)	0.0206 (8)
H9A	-0.2728	0.4573	0.4137	0.025*
H9B	-0.2777	0.3561	0.4230	0.025*
C10	-0.0578 (4)	0.4038 (2)	0.4366 (2)	0.0191 (8)
C11	0.1930 (4)	0.4077 (2)	0.46061 (19)	0.0176 (8)
C12	0.3508 (4)	0.4136 (2)	0.4588 (2)	0.0226 (9)
H12A	0.3884	0.4293	0.4150	0.027*
C13	0.4501 (5)	0.3963 (2)	0.5213 (2)	0.0224 (8)
H13A	0.5583	0.3992	0.5209	0.027*
C14	0.3941 (5)	0.3740 (2)	0.5875 (2)	0.0236 (9)
H14A	0.4658	0.3629	0.6306	0.028*
C15	0.2386 (5)	0.3684 (2)	0.5901 (2)	0.0220 (8)
H15A	0.2001	0.3537	0.6338	0.026*
C16	0.1396 (4)	0.3857 (2)	0.5243 (2)	0.0189 (8)
C17	0.2500 (5)	0.3857 (2)	0.2217 (2)	0.0212 (8)
C18	0.3369 (5)	0.3376 (2)	0.1691 (2)	0.0242 (9)
H18A	0.4488	0.3499	0.1815	0.029*
H18B	0.3220	0.2755	0.1749	0.029*
C19	0.2816 (5)	0.3627 (2)	0.0897 (2)	0.0271 (9)
H19A	0.3410	0.3303	0.0574	0.033*
H19B	0.1712	0.3472	0.0764	0.033*
C20	0.3008 (5)	0.4576 (3)	0.0773 (2)	0.0288 (9)
H20A	0.4098	0.4733	0.0949	0.035*
H20B	0.2356	0.4892	0.1075	0.035*
C21	0.2588 (5)	0.4865 (3)	-0.0021 (2)	0.0285 (9)
H21A	0.1521	0.4681	-0.0212	0.034*
H21B	0.3293	0.4589	-0.0322	0.034*
C22	0.2704 (5)	0.5833 (3)	-0.0092 (2)	0.0305 (10)
H22A	0.3746	0.6015	0.0142	0.037*
H22B	0.1944	0.6100	0.0183	0.037*
C23	0.2422 (5)	0.6172 (2)	-0.0878 (2)	0.0245 (9)
H23A	0.3248	0.5961	-0.1143	0.029*

supplementary materials

H23B	0.1423	0.5949	-0.1132	0.029*
C24	0.2393 (5)	0.7145 (2)	-0.0905 (2)	0.0281 (9)
H24A	0.1541	0.7353	-0.0656	0.042*
H24B	0.3375	0.7366	-0.0631	0.042*
C25	0.2180 (5)	0.7502 (2)	0.3325 (2)	0.0225 (8)
H25A	0.1273	0.7789	0.3040	0.034*
H25B	0.3096	0.7666	0.3101	0.034*
C26	0.1956 (4)	0.6554 (2)	0.3231 (2)	0.0210 (8)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.01791 (16)	0.02168 (16)	0.01482 (16)	-0.00217 (11)	0.00329 (10)	0.00041 (11)
N1	0.0207 (17)	0.0248 (17)	0.0121 (16)	-0.0036 (13)	0.0001 (13)	0.0008 (12)
N2	0.0156 (16)	0.0292 (18)	0.0161 (16)	-0.0049 (14)	0.0023 (13)	-0.0007 (13)
N3	0.0228 (17)	0.0168 (15)	0.0149 (16)	-0.0013 (13)	0.0036 (13)	0.0002 (12)
N4	0.0260 (19)	0.0199 (16)	0.0119 (16)	0.0022 (13)	0.0056 (14)	0.0031 (12)
01	0.0209 (16)	0.0298 (15)	0.0292 (16)	-0.0017 (12)	0.0016 (12)	-0.0059 (12)
O2	0.0210 (14)	0.0223 (14)	0.0199 (14)	-0.0034 (11)	0.0036 (11)	-0.0037 (11)
O3	0.0284 (15)	0.0215 (14)	0.0164 (14)	-0.0031 (11)	0.0073 (11)	0.0033 (11)
O4	0.0301 (16)	0.0256 (14)	0.0146 (14)	-0.0033 (12)	0.0045 (12)	-0.0017 (11)
C1	0.026 (2)	0.022 (2)	0.0157 (19)	-0.0027 (16)	-0.0013 (16)	-0.0016 (15)
C2	0.025 (2)	0.031 (2)	0.027 (2)	-0.0058 (18)	0.0021 (17)	0.0037 (18)
C3	0.039 (3)	0.026 (2)	0.024 (2)	-0.0026 (19)	0.0026 (19)	0.0080 (17)
C4	0.034 (3)	0.029 (2)	0.027 (2)	0.0033 (19)	-0.0005 (19)	0.0054 (18)
C5	0.025 (2)	0.031 (2)	0.025 (2)	0.0014 (18)	0.0011 (17)	-0.0028 (17)
C6	0.025 (2)	0.022 (2)	0.017 (2)	0.0003 (16)	0.0022 (16)	-0.0020 (15)
C7	0.023 (2)	0.023 (2)	0.0126 (19)	-0.0032 (16)	0.0034 (16)	-0.0052 (15)
C8	0.024 (2)	0.022 (2)	0.020 (2)	-0.0056 (16)	0.0026 (16)	-0.0013 (15)
C9	0.023 (2)	0.022 (2)	0.017 (2)	-0.0033 (16)	0.0059 (16)	0.0019 (15)
C10	0.023 (2)	0.0124 (18)	0.022 (2)	-0.0009 (15)	0.0044 (16)	-0.0023 (15)
C11	0.024 (2)	0.0118 (17)	0.0165 (19)	-0.0007 (15)	0.0018 (16)	-0.0010 (14)
C12	0.027 (2)	0.0191 (19)	0.022 (2)	-0.0021 (16)	0.0049 (17)	0.0005 (15)
C13	0.022 (2)	0.022 (2)	0.022 (2)	0.0002 (16)	0.0012 (17)	-0.0042 (16)
C14	0.031 (2)	0.020 (2)	0.017 (2)	0.0055 (17)	-0.0016 (17)	-0.0012 (15)
C15	0.030 (2)	0.020 (2)	0.016 (2)	0.0039 (16)	0.0040 (17)	0.0028 (15)
C16	0.026 (2)	0.0159 (18)	0.0142 (19)	0.0006 (16)	0.0021 (16)	-0.0027 (14)
C17	0.026 (2)	0.0192 (19)	0.018 (2)	-0.0037 (16)	0.0015 (17)	0.0050 (15)
C18	0.026 (2)	0.022 (2)	0.025 (2)	0.0019 (17)	0.0020 (17)	-0.0034 (16)
C19	0.035 (2)	0.025 (2)	0.022 (2)	0.0052 (18)	0.0060 (18)	-0.0038 (17)
C20	0.036 (2)	0.023 (2)	0.026 (2)	0.0018 (18)	0.0038 (19)	0.0031 (17)
C21	0.038 (2)	0.030 (2)	0.017 (2)	0.0023 (19)	0.0010 (18)	0.0007 (16)
C22	0.045 (3)	0.026 (2)	0.019 (2)	0.0030 (19)	-0.0010 (19)	0.0012 (17)
C23	0.027 (2)	0.021 (2)	0.025 (2)	0.0038 (17)	0.0013 (17)	-0.0003 (16)
C24	0.037 (2)	0.022 (2)	0.024 (2)	0.0015 (18)	-0.0015 (19)	-0.0021 (16)
C25	0.022 (2)	0.026 (2)	0.019 (2)	-0.0033 (16)	0.0018 (16)	0.0029 (16)
C26	0.0127 (19)	0.026 (2)	0.023 (2)	-0.0023 (16)	0.0001 (15)	0.0007 (17)

Geometric parameters (Å, °)

Cd1—N1	2.246 (3)	С9—Н9В	0.9900
Cd1—N3	2.287 (3)	C11—C16	1.374 (5)
Cd1—O2	2.340 (3)	C11—C12	1.391 (5)
Cd1—O1	2.348 (3)	C12—C13	1.360 (5)
Cd1—O3	2.377 (3)	C12—H12A	0.9500
Cd1—O4	2.382 (3)	C13—C14	1.429 (5)
Cd1—C17	2.681 (4)	С13—Н13А	0.9500
Cd1—C26	2.729 (4)	C14—C15	1.372 (5)
N1—C7	1.326 (5)	C14—H14A	0.9500
N1—C1	1.393 (5)	C15—C16	1.405 (5)
N2—C7	1.347 (5)	C15—H15A	0.9500
N2—C6	1.380 (5)	C17—C18	1.522 (5)
N2—H2A	0.8800	C18—C19	1.521 (5)
N3—C10	1.325 (5)	C18—H18A	0.9900
N3—C11	1.418 (5)	C18—H18B	0.9900
N4—C10	1.344 (5)	C19—C20	1.518 (5)
N4—C16	1.375 (5)	С19—Н19А	0.9900
N4—H4A	0.8800	С19—Н19В	0.9900
O1—C17	1.244 (5)	C20—C21	1.525 (6)
O2—C17	1.270 (4)	C20—H20A	0.9900
O3—C26	1.269 (4)	C20—H20B	0.9900
O4—C26	1.252 (4)	C21—C22	1.528 (5)
C1—C6	1.398 (5)	C21—H21A	0.9900
C1—C2	1.401 (5)	C21—H21B	0.9900
С2—С3	1.377 (6)	C22—C23	1.529 (5)
C2—H2B	0.9500	C22—H22A	0.9900
C3—C4	1.400 (6)	C22—H22B	0.9900
С3—НЗА	0.9500	C23—C24	1.526 (5)
C4—C5	1.375 (6)	С23—Н23А	0.9900
C4—H4B	0.9500	С23—Н23В	0.9900
C5—C6	1.400 (6)	C24—C25 ⁱ	1.509 (5)
C5—H5A	0.9500	C24—H24A	0.9900
С7—С8	1.494 (5)	C24—H24B	0.9900
C8—C9	1.519 (5)	C25—C26	1.506 (5)
C8—H8A	0.9900	C25—C24 ⁱⁱ	1.509 (5)
C8—H8B	0.9900	С25—Н25А	0.9900
C9—C10	1.503 (5)	С25—Н25В	0.9900
С9—Н9А	0.9900		
N1—Cd1—N3	98.51 (11)	N4—C10—C9	120.3 (3)
N1—Cd1—O2	145.72 (10)	C16—C11—C12	120.5 (3)
N3—Cd1—O2	102.28 (10)	C16—C11—N3	108.8 (3)
N1—Cd1—O1	92.89 (10)	C12—C11—N3	130.7 (3)
N3—Cd1—O1	104.02 (10)	C13—C12—C11	118.3 (4)
O2—Cd1—O1	55.80 (9)	C13—C12—H12A	120.9
N1—Cd1—O3	102.14 (10)	C11—C12—H12A	120.9

supplementary materials

N3—Cd1—O3	86.56 (9)	C12—C13—C14	121.0 (4)
O2—Cd1—O3	106.02 (9)	С12—С13—Н13А	119.5
O1—Cd1—O3	160.22 (9)	C14—C13—H13A	119.5
N1—Cd1—O4	94.74 (10)	C15—C14—C13	121.2 (4)
N3—Cd1—O4	141.03 (10)	C15—C14—H14A	119.4
O2—Cd1—O4	85.97 (9)	C13—C14—H14A	119.4
O1—Cd1—O4	111.74 (9)	C14—C15—C16	116.2 (3)
O3—Cd1—O4	54.78 (8)	С14—С15—Н15А	121.9
N1—Cd1—C17	118.86 (11)	C16—C15—H15A	121.9
N3—Cd1—C17	106.81 (11)	C11—C16—N4	106.3 (3)
O2—Cd1—C17	28.27 (10)	C11—C16—C15	122.8 (4)
O1—Cd1—C17	27.65 (10)	N4—C16—C15	130.9 (3)
O3—Cd1—C17	133.42 (10)	O1—C17—O2	121.5 (4)
O4—Cd1—C17	98.27 (10)	O1—C17—C18	119.5 (3)
N1—Cd1—C26	97.00 (11)	O2—C17—C18	119.0 (3)
N3—Cd1—C26	114.25 (11)	O1-C17-Cd1	61.1 (2)
O2—Cd1—C26	98.88 (10)	O2—C17—Cd1	60.75 (19)
O1-Cd1-C26	138.34 (10)	C18—C17—Cd1	171.1 (3)
O3—Cd1—C26	27.70 (10)	C19—C18—C17	111.7 (3)
O4—Cd1—C26	27.29 (10)	C19—C18—H18A	109.3
C17—Cd1—C26	119.61 (11)	C17—C18—H18A	109.3
C7—N1—C1	105.3 (3)	C19—C18—H18B	109.3
C7—N1—Cd1	122.8 (3)	C17—C18—H18B	109.3
C1—N1—Cd1	131.4 (2)	H18A—C18—H18B	107.9
C7—N2—C6	107.6 (3)	C20—C19—C18	111.8 (3)
C7—N2—H2A	126.2	С20—С19—Н19А	109.3
C6—N2—H2A	126.2	С18—С19—Н19А	109.3
C10—N3—C11	104.7 (3)	С20—С19—Н19В	109.3
C10—N3—Cd1	133.0 (3)	С18—С19—Н19В	109.3
C11—N3—Cd1	119.3 (2)	H19A—C19—H19B	107.9
C10—N4—C16	107.8 (3)	C19—C20—C21	114.8 (3)
C10—N4—H4A	126.1	C19—C20—H20A	108.6
C16—N4—H4A	126.1	C21—C20—H20A	108.6
C17—O1—Cd1	91.2 (2)	C19—C20—H20B	108.6
C17—O2—Cd1	91.0 (2)	С21—С20—Н20В	108.6
C26—O3—Cd1	91.8 (2)	H20A—C20—H20B	107.5
C26—O4—Cd1	92.0 (2)	C20—C21—C22	111.6 (3)
N1—C1—C6	109.1 (3)	C20-C21-H21A	109.3
N1—C1—C2	131.1 (4)	C22—C21—H21A	109.3
C6—C1—C2	119.8 (4)	C20-C21-H21B	109.3
C3—C2—C1	117.8 (4)	C22—C21—H21B	109.3
С3—С2—Н2В	121.1	H21A—C21—H21B	108.0
C1—C2—H2B	121.1	C21—C22—C23	115.1 (3)
C2—C3—C4	121.3 (4)	C21—C22—H22A	108.5
С2—С3—НЗА	119.4	C23—C22—H22A	108.5
С4—С3—Н3А	119.4	C21—C22—H22B	108.5
C5—C4—C3	122.4 (4)	С23—С22—Н22В	108.5
C5—C4—H4B	118.8	H22A—C22—H22B	107.5
C3—C4—H4B	118.8	C24—C23—C22	112.2 (3)

C4—C5—C6	116.0 (4)	C24—C23—H23A	109.2
С4—С5—Н5А	122.0	С22—С23—Н23А	109.2
С6—С5—Н5А	122.0	С24—С23—Н23В	109.2
N2—C6—C1	105.5 (3)	С22—С23—Н23В	109.2
N2—C6—C5	131.8 (4)	H23A—C23—H23B	107.9
C1—C6—C5	122.7 (4)	C25 ⁱ —C24—C23	113.3 (3)
N1—C7—N2	112.5 (3)	C25 ⁱ —C24—H24A	108.9
N1—C7—C8	125.9 (4)	C23—C24—H24A	108.9
N2—C7—C8	121.6 (3)	C25 ⁱ —C24—H24B	108.9
С7—С8—С9	115.2 (3)	C23—C24—H24B	108.9
С7—С8—Н8А	108.5	H24A—C24—H24B	107.7
С9—С8—Н8А	108.5	C26—C25—C24 ⁱⁱ	117.6 (3)
С7—С8—Н8В	108.5	C26—C25—H25A	107.9
С9—С8—Н8В	108.5	C24 ⁱⁱ —C25—H25A	107.9
H8A—C8—H8B	107.5	С26—С25—Н25В	107.9
С10—С9—С8	115.5 (3)	C24 ⁱⁱ —C25—H25B	107.9
С10—С9—Н9А	108.4	H25A—C25—H25B	107.2
С8—С9—Н9А	108.4	O4—C26—O3	120.5 (3)
С10—С9—Н9В	108.4	O4—C26—C25	119.4 (3)
С8—С9—Н9В	108.4	O3—C26—C25	120.0 (3)
H9A—C9—H9B	107.5	O4—C26—Cd1	60.71 (19)
N3—C10—N4	112.4 (3)	O3—C26—Cd1	60.53 (19)
N3—C10—C9	127.3 (3)	C25—C26—Cd1	169.2 (3)

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) x, -y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2A····O2 ⁱⁱⁱ	0.88	1.85	2.722 (4)	173
N4—H4A····O3 ^{iv}	0.88	1.87	2.686 (4)	154
Symmetry codes: (iii) $x-1$, y , z ; (iv) $-x$, $-y+1$, $-z+1$.				